

ANNUAL REPORT 2009

UIUC, August 5, 2009

Misalignment Effects on Vortex Formation

Seong-Mook Cho, Go-Gi Lee, Seon Hyo Kim

Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

Rajneesh Chaudhary, Brian G. Thomas

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206W. Green St., Urbana, IL, USA, 61801

Oh-Duck Kwon

POSCO Technical Research Laboratories, POSCO, Pohang, Kyungbuk 790-784, South Korea

POSTECH

Research Scope

- Vortex formation can entrap mold flux and cause defects in slab casting.
- Objective: study effect of stopper rod asymmetry on vortex formation, using math and physical models.
- Simulation results show vortices near SEN with misaligned stopper-rod.
- Water model experiments quantify vortex formation to verify simulation results, and evaluate Karman vortex equation for frequency, and penetration depth equation.

Schematic of 1/3 Scale Water Model

Seong-Mook Cho • 3

Processing Conditions for Experimental and Computational Works

Casting speed	0 917 m/min		
Water flow rate	34 4 I PM		
Mold width	54.4 El M		
Mold thickness	75 mm		
	75 mm		
Computational domain width	250 mm		
Computational domain thickness	37.5 mm		
Computational domain length	1200 mm		
SEN depth	60 mm		
$ ho_{fluid}$	998.2 kg/m³ (water)		
$\mu_{_{fluid}}$	0.001003 kg/m-s (water)		
Channen ned le estien	Aligned(Center)		
Stopper-rod location	2mm misaligned(Front and Left)		
Nozzle(well bottom type) port angle	35 degree		
Nozzle port area	23.3 mm(width) x 26.7mm(height)		
Nozzle bore diameter (inner/outer)	25 mm/43 mm		
Distance between tundish bottom	F(0 mm		
and nozzle bottom	500 MM		
Shell	no		
Gas injection	no		

University of Illinois at Urbana-Champaign

Casting Consortium

Metals Processing Simulation Lab

Experimental Approach

Seong-Mook Cho •

5

Casting Consortium

POSTECH

Visualization of vortex formation:

- Scatter sesame seeds(tracer particles) at surface of water-model mold
- Record high speed videos and take pictures

Measuring vortex frequency:

- Count number and location of vortices in a time interval
- Divide number of vortex at each location by the time interval

Analyzing velocity profiles:

- Measure velocity profiles near surface with impeller flow probe
- Compare velocity profiles on left / right sides and NF / center
- Calculate asymmetric flow fractions, average velocities, velocity variations, turbulent kinetic energy(K)

Method of Counting Vortex Formation tinuous Casting Consortium Outside 2 1 Right Left SEN region region 3 4 Inside **Counting vortex formation** - Divide the four region near SEN - Count the number of each region in a time interval Left region VS Right region: 1 + 4 VS 2 + 3 Outside region VS Inside region (1 + 2) VS(3 + 4)University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Seong-Mook Cho 9

- Asymmetry of vortex location fraction between inside and outside is small

•

0.05 0.0333333 0.0166667

•

• 12

POSTECH

POSTECH

0.09

•

Left_misaligned(150mm from NFs)

Total data point:2000	R <l< th=""><th>R>L</th></l<>	R>L
# of data points (asymmetric fraction%)	365 (18.5%	1635 (81.5%
Avg_variation (between left and right) (m/sec)	0.017	0.d37
Max variation (m/sec)	0.066	0.113

left and right) (m/sec) Max variation

(m/sec)

0.089

18

POSTECH

Comparison of measured Vortex frequency with Surface velocity (avg, max, variations, and asymmetric fraction)

			•	-						
Aligned(150mm f	rom nfs)				Left_misal	Igned(15 0	mm from n	fs)		
Total data point:2000	R <l< td=""><td>R>L</td><td>]</td><td colspan="2">Total data point:2000</td><td colspan="2">Total data point:2000 R<l< td=""><td>R<l< td=""><td>R>L</td><td></td></l<></td></l<></td></l<>	R>L]	Total data point:2000		Total data point:2000 R <l< td=""><td>R<l< td=""><td>R>L</td><td></td></l<></td></l<>		R <l< td=""><td>R>L</td><td></td></l<>	R>L	
# of data points(total:2000) (asymmetric fraction%)	878 (44%)	1122 (56%)	1122# of data points(total:2000)(56%)(asymmetric fraction%)		365 (18.5%)	1635 (81.5%	6)			
Avg_variation (between left and right) (m/sec)	0.024	0.029	0.029 Avg_variation (between left and right)(m/sec)		0.017	0.037				
Max variation (m/sec)	0.071	0.093	Max variation (m/sec)		0.066	0.113				
Front_misaligned(150	mm from ni	fs)) <u>м</u>	easured v	/ortex	Left	region	Right	region	
Total data point:2000	R <l< td=""><td>R>L</td><td colspan="2">frequency(#/min)</td><td>all</td><td>strong</td><td>all</td><td>strong</td></l<>	R>L	frequency(#/min)		all	strong	all	strong		
# of data points(total:2000)	1175 (58 5%)	825 (41 5%)	Aligned		11	1.48	12	1.56		
Avg_variation (between left	0.031	0.022		alianad	Front (2mm)	15	1.56	14	1.44	
Max variation (m/sec)	0.091	0.087		anyneu	Left (2mm)	17	2.84	8	1.16	

- Left misaligned: Vortex frequency and asymmetry are higher when right side velocity is faster than left (as indicated by higher avg., max., variation, and asymmetric fraction on right, which are always consistent).

- Asymmetric flow could make more vortices and strong vortices near left region of SEN with left misaligned stopper-rod

```
University of Illinois at Urbana-Champaign
```

- Metals Processing Simulation Lab
- Seong-Mook Cho •

POSTECH

19

Comparison of Measured Vortex Frequency with Turbulent

Turbulent Kinetic Energy(m2/sec2) (150mm away from NF)						
		Left r (*e-04 n	region n2/sec2)	Right region (*e-04 m2/sec2)		
		predicted	measured	predicted	measured	
Aligned		3.75	4.72	3.75	5.30	
Missiansd	Front	5.33	5.52	5.33	5.07	
Misaligned	Left	1.40	4.04	3.00	4.88	

Measure (15	Measured Average (150mm awa		(m/sec) ⁻)	Measured vortex		Left	region	Right	region
		Left	Right	frequency(#/min) Aligned		all	strong	all	strong
		region	region			11	1.48	12	1.56
Aligned	1	0.098	0.103	Front		45	1.57	14	1.44
	Front	0.105	0.096	Misaligned	(2mm)	15	1.50	14	1.44
Misaligned	1.00	0.004	0.111	Misungricu	Left	17	2.84	8	1.16
	Lett	0.084	0.111		(2mm)				

-Asymmetric turbulent kinetic energy and velocity between left region and right region both influence the asymmetric surface flow and vortex formation - Difference of surface flow velocity is more direct cause of vortex formation

•

•

22

Calculations with Karman Vortex Equation

Predicted vortex frequency using average velocity						
Left Right Vortex (m/sec) (m/sec frequency(#/min)						
Aligned	0.098	0.103	0.30(left region)			
Front misaligned	0.105	0.096	0.54(right region)			
Left misaligned	0.084	0.111	1.62(left region)			

-Average velocity predicts vortices on only one side; but measurements show both sides. -Instead:

nstead:

-Vortices are caused by small left-right velocity variations - Instantaneous velocity is better v for predicting vortex formation

.

Predi usina	cted vortex free Instantaneous	quency velocity				1		
	Left region_	Right region_	ight region_ vortex Frequency (#/min) Aligned		Left region		Right region	
	vortex	vortex			all	strong	all	strong
	Frequency (#/min)	Frequency (#/min)			11	1.48	12	1.56
Aligned	4.28	2.76	Front (2mm)		15	1.56	14	1.44
Front misaligned	2.42	4.83	Misaligned	Left	17	2.84	8	1.16
Left misaligned	6.99	0.79						<u> </u>
University of Illinois	at Urbana-Champaign	• M	etals Processing Simula	ation Lab	•	Seona-Mo	ok Cho	• 2

Comparison of Measured Vortex Frequency with Comparison of Measured Vortex Frequency equation

- Asymmetry of vortex formation location is high with a left-misaligned stopper-rod (There are more vortices at left region of SEN with a left-misaligned stopper-rod).

- Predicted vortex frequency is between measured frequency of all vortices and strong vortices. (Karman vortex equation over-predicts number of strong vortex)

Penetration of Vortex

POSTECH

Evaluation of Equation to predict Vortex Penetration Depth (application to left misaligned stopper-rod case)

$$D_{v} = \frac{\rho_{w}}{\rho_{w} - \rho_{p}} \frac{v_{mc}^{2}}{g} + 0.654 \left\{ \frac{\rho_{p} \Delta v_{h}^{2}}{2g(\rho_{w} - \rho_{p})} \right\}^{0.55}$$

Assumption: the kinetic energy of model mold powder = the work done by the buoyancy

< Norifumi KASAI and Manabu IGUCHI, ISIJ Int, Vol. 47(2007), No. 7, pp. 982-987 >

D_{v}	penetration depth of vortex
$ ho_{\scriptscriptstyle w}$	Density of water (998.2kg/m3)
$ ho_{p}$	Density of mold powder <mark>(seeds: 886.8kg/m3)</mark>
V _{mc}	Horizontal velocity in the region between the SEN and WFS(0.029m/sec)
Δv_h	Sudden decrease of vertical velocity(0.026m/sec)

	Measured	78 mm
D_{v}	Predicted by the equation	8 mm

- Turbulent kinetic energy, vorticity could be more important factors on vortex penetration depth

•

POSTECH

Measurement and Simulation:

inuous Casting Consortium

- Averaged surface horizontal velocity and turbulent kinetic energy by

measurement match quite well with predicted results of R. Chaudhary

- Most vortices are formed at 4 regions near SEN (60mm from SEN center)
- Misaligned stopper-rod causes asymmetric vortex formation
 - * Most vortices form at the left region of SEN with left misaligned stopper-rod (matched

with simulation results of R. Chaudhary)

* Vortices form more at the outside region than inside region with front misaligned stopper-rod

- Vortices are caused by the difference of flow velocity between right and left side
- Vortices are stronger and more frequent with big right/left velocity difference
- The simulation predicts vortex formation similar to observations in water model but predicted location is slightly closer to centerline, and has shallower penetration and different shape.

27

Ontinuous Casting

Conclusions

Measurement and Previous Theoretical Equations

1) Karman Vortex Formation

- Predictions using instantaneous velocity matches observed vortex formation trends.
- The predictions fall in between strong and weak vortex frequency measurements.
- Quantitative agreement depends on subjective opinion of vortex strength.
- Strong vortices (able to entrain slag) are more relevant to commercial practice.
- Karman equation with instantaneous velocity seems to be fundamentally sound and predicts correct trends (needs calibration for vortex strength)

2) The penetration depth equation (KASAI and IGUCHI)

- The penetration depth equation of KASAI and IGUCHI greatly underpredicts the measurements. Perhaps should consider turbulent kinetic energy & vorticity.

Acknowledgements

-Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Corus, Delavan/Goodrich, LWB Refractories, Nucor, Nippon Steel, Postech, Steel Dynamics, ANSYS-Fluent)

-POSCO: An Jong Tae, Ho Jung Shin

-Technology Innovation Center for Metals & Materials at POSTECH for high speed camera

- POSTECH: Hyun Na Bae, Hyoung Jun Lee, See young Park

29